On neighborhood condition for graphs to have [a,b]-factors
نویسندگان
چکیده
منابع مشابه
A Neighborhood Condition for Graphs to Have [ a , b ]-Factors III
Let a, b, k, and m be positive integers such that 1 ≤ a < b and 2 ≤ k ≤ (b + 1− m)/a. Let G = (V (G), E(G)) be a graph of order |G|. Suppose that |G| > (a + b)(k(a + b − 1) − 1)/b and |NG(x1) ∪ NG(x2) ∪ · · · ∪ NG(xk)| ≥ a|G|/(a+ b) for every independent set {x1, x2, . . . , xk} ⊆ V (G). Then for any subgraph H of G with m edges and δ(G−E(H)) ≥ a, G has an [a, b]-factor F such that E(H) ∩ E(F )...
متن کاملOn common neighborhood graphs II
Let G be a simple graph with vertex set V (G). The common neighborhood graph or congraph of G, denoted by con(G), is a graph with vertex set V (G), in which two vertices are adjacent if and only if they have at least one common neighbor in G. We compute the congraphs of some composite graphs. Using these results, the congraphs of several special graphs are determined.
متن کاملA Sufficient Condition for Graphs to Have Hamiltonian [a, b]-Factors
Let a and b be nonnegative integers with 2 ≤ a < b, and let G be a Hamiltonian graph of order n with n ≥ (a+b−4)(a+b−2) b−2 . An [a, b]-factor F of G is called a Hamiltonian [a, b]-factor if F contains a Hamiltonian cycle. In this paper, it is proved that G has a Hamiltonian [a, b]-factor if |NG(X)| > (a−1)n+|X|−1 a+b−3 for every nonempty independent subset X of V (G) and δ(G) > (a−1)n+a+b−4 a+...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2003
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(02)00672-6